Identities of Inverse Trigonometric Functions

Learn the important identities involving inverse trigonometric functions, including algebraic transformations, sum and difference identities, and useful evaluation rules.

1. Basic Functional Identities

These identities help convert between inverse trig functions and simplify expressions.

  • \( \sin(\sin^{-1} x) = x \), for \(x \in [-1, 1]\)
  • \( \cos(\cos^{-1} x) = x \), for \(x \in [-1, 1]\)
  • \( \tan(\tan^{-1} x) = x \), for all real \(x\)

The inverses work perfectly only on their allowed domains.

2. Complementary Angle Identities

These identities relate inverse functions of sine, cosine and tangent to each other.

  • \( \sin^{-1} x + \cos^{-1} x = \dfrac{\pi}{2} \)
  • \( \tan^{-1} x + \cot^{-1} x = \dfrac{\pi}{2} \)

These are frequently used in simplifications and proofs.

3. Reciprocal Identities

Using the reciprocal relationships from trigonometry:

  • \( \sec^{-1} x = \cos^{-1}\left(\dfrac{1}{x}\right) \), for \(|x| \ge 1\)
  • \( \csc^{-1} x = \sin^{-1}\left(\dfrac{1}{x}\right) \), for \(|x| \ge 1\)
  • \( \cot^{-1} x = \tan^{-1}\left(\dfrac{1}{x}\right) \), for \(x > 0\)

4. Odd–Even Identities

These identities help when expressions contain negative values.

  • \( \sin^{-1}(-x) = -\sin^{-1}(x) \)
  • \( \tan^{-1}(-x) = -\tan^{-1}(x) \)
  • \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \)
  • \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \)

5. Sum and Difference Identities for tan⁻¹

These are very useful in simplifying expressions involving sums of inverse tangents.

  • \( \tan^{-1} a + \tan^{-1} b = \tan^{-1}\left(\dfrac{a + b}{1 - ab}\right) \), if \(ab < 1\)
  • \( \tan^{-1} a - \tan^{-1} b = \tan^{-1}\left(\dfrac{a - b}{1 + ab}\right) \)

These identities come from the tangent addition and subtraction formulas.

6. Important Composed Identities

These identities help combine two different inverse trig functions into one.

  • \( \sin^{-1} x = \tan^{-1}\left(\dfrac{x}{\sqrt{1 - x^2}}\right) \), for \(|x| < 1\)
  • \( \cos^{-1} x = \tan^{-1}\left(\dfrac{\sqrt{1 - x^2}}{x}\right) \), for \(x > 0\)
  • \( \tan^{-1} x = \sin^{-1}\left(\dfrac{x}{\sqrt{1 + x^2}}\right) \)

7. Double Angle–Type Identities

These mirror the structure of standard double-angle formulas.

  • \( 2\sin^{-1} x = \sin^{-1}(2x\sqrt{1 - x^2}) \)
  • \( 2\tan^{-1} x = \tan^{-1}\left(\dfrac{2x}{1 - x^2}\right) \), for \(x \ne \pm 1\)

8. Examples to Understand the Identities

Example 1: Simplify \(\sin^{-1}(x) + \cos^{-1}(x)\).

\(\sin^{-1}(x) + \cos^{-1}(x) = \dfrac{\pi}{2}\)


Example 2: Evaluate \(\tan^{-1}(1) + \tan^{-1}(2)\).

Let a = 1, b = 2: \( \tan^{-1}(1) + \tan^{-1}(2) = \tan^{-1}\left(\dfrac{1 + 2}{1 - 2}\right) = \tan^{-1}(-3) \).