NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 11: Area Related To Circles - Exercise 11.3
Question 3

Question. 3

Find the area of a sector of a circle of radius 28 cm and central angle \(45^\circ\).

Answer:

\(98\pi\;\text{cm}^2\) (≈ 307.88 cm²)

Detailed Answer with Explanation:

Step 1: Recall the formula
The area of a sector of a circle is given by:
\[ A = \dfrac{\theta}{360^\circ} \times \pi r^2 \]
where:
• \(\theta\) = central angle in degrees
• \(r\) = radius of the circle
• \(\pi \approx 3.1416\)

Step 2: Write the given values
• Radius, \(r = 28\;\text{cm}\)
• Central angle, \(\theta = 45^\circ\)

Step 3: Substitute into the formula
\[ A = \dfrac{45}{360} \times \pi \times (28)^2 \]

Step 4: Simplify the fraction
\[ \dfrac{45}{360} = \dfrac{1}{8} \]
So,
\[ A = \dfrac{1}{8} \times \pi \times (28)^2 \]

Step 5: Square the radius
\[ (28)^2 = 784 \]
Therefore,
\[ A = \dfrac{1}{8} \times \pi \times 784 \]

Step 6: Divide 784 by 8
\[ \dfrac{784}{8} = 98 \]
So,
\[ A = 98\pi \; \text{cm}^2 \]

Step 7: Approximate the value of \(\pi\)
\[ 98 \times 3.1416 \approx 307.88 \]
Hence,
\[ A \approx 307.88\;\text{cm}^2 \]

Final Answer:
The area of the sector is \(98\pi\;\text{cm}^2\) (≈ 307.88 cm²).

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 11: Area Related To Circles – Exercise 11.3 | Detailed Answers