NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 2: Polynomials - Exercise 2.3
Question 8

Question. 8

Find the zeroes of \(v^2+4\sqrt{3}v-15\) and verify relations.

Answer:

\(v=\sqrt{3},\; v=-5\sqrt{3}\)

Detailed Answer with Explanation:

Step 1: Quadratic formula.

\(a=1, b=4\sqrt{3}, c=-15\)

Discriminant = \((4\sqrt{3})^2 - 4(1)(-15)\)

= 48 + 60 = 108

\(\sqrt{108} = 6\sqrt{3}\)

Step 2: Roots.

\(v = \dfrac{-4\sqrt{3} + 6\sqrt{3}}{2} = \sqrt{3}\)

\(v = \dfrac{-4\sqrt{3} - 6\sqrt{3}}{2} = -5\sqrt{3}\)

Step 3: Verify.

Sum = \(\sqrt{3} - 5\sqrt{3} = -4\sqrt{3}\)

= -b/a = -4\sqrt{3}

Product = \(\sqrt{3} × -5\sqrt{3} = -15\)

= c/a = -15

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 2: Polynomials – Exercise 2.3 | Detailed Answers