NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 2: Polynomials - Exercise 2.4
Question 1

Question. 1i

For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.

(i). \(-\dfrac{8}{3}\), \(\dfrac{4}{3}\)

(ii). \(\dfrac{21}{8}\), \(\dfrac{5}{16}\)

(iii). \(-2\sqrt{3}\), \(-9\)

(iv). \(-\dfrac{3}{2\sqrt{5}}\), \(-\dfrac{1}{2}\)

Answer:

(i) Polynomial: \(3x^2 + 8x + 4\); Zeroes: \(x=-2\), \(x=-\dfrac{2}{3}\).

(ii) Polynomial: \(16x^2 - 42x + 5\); Zeroes: \(x=\dfrac{5}{2}\), \(x=\dfrac{1}{8}\).

(iii) Polynomial: \(x^2 + 2\sqrt{3}x - 9\); Zeroes: \(x=\sqrt{3}\), \(x=-3\sqrt{3}\).

(iv) Polynomial: \(2\sqrt{5}x^2 + 3x - \sqrt{5}\); Zeroes: \(x=\dfrac{1}{\sqrt{5}}\), \(x=-\dfrac{\sqrt{5}}{2}\).

Detailed Answer with Explanation:

Key idea: If the sum of zeroes is \(S\) and the product is \(P\), then the monic quadratic is

\(x^2 - Sx + P = 0\).

To avoid fractions or surds in coefficients, we may multiply the whole equation by a suitable non-zero constant.

(i) \(S=-\dfrac{8}{3}\), \(P=\dfrac{4}{3}\).

Monic form: \(x^2 + \dfrac{8}{3}x + \dfrac{4}{3} = 0\).

Multiply by 3: \(3x^2 + 8x + 4 = 0\).

Factorise: \((3x+2)(x+2)=0\Rightarrow x=-\dfrac{2}{3},\,-2\).

(ii) \(S=\dfrac{21}{8}\), \(P=\dfrac{5}{16}\).

Monic form: \(x^2 - \dfrac{21}{8}x + \dfrac{5}{16} = 0\).

Multiply by 16: \(16x^2 - 42x + 5 = 0\).

Discriminant: \(\,42^2 - 4\cdot16\cdot5 = 1764 - 320 = 1444 = 38^2\).

Roots: \(x=\dfrac{42 \pm 38}{32} = \dfrac{80}{32},\,\dfrac{4}{32} = \dfrac{5}{2},\,\dfrac{1}{8}\).

(iii) \(S=-2\sqrt{3}\), \(P=-9\).

Monic form: \(x^2 + 2\sqrt{3}x - 9 = 0\).

Quadratic formula:

\(x = \dfrac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4\cdot1\cdot(-9)}}{2}\)

\(= \dfrac{-2\sqrt{3} \pm \sqrt{12 + 36}}{2} = \dfrac{-2\sqrt{3} \pm \sqrt{48}}{2}\)

\(= \dfrac{-2\sqrt{3} \pm 4\sqrt{3}}{2} = \sqrt{3},\,-3\sqrt{3}\).

(iv) \(S=-\dfrac{3}{2\sqrt{5}}\), \(P=-\dfrac{1}{2}\).

Monic form: \(x^2 + \dfrac{3}{2\sqrt{5}}x - \dfrac{1}{2} = 0\).

Multiply by \(2\sqrt{5}\): \(2\sqrt{5}x^2 + 3x - \sqrt{5} = 0\).

Check zeroes by sum/product:

\(\dfrac{1}{\sqrt{5}} + \left(-\dfrac{\sqrt{5}}{2}\right) = -\dfrac{3}{2\sqrt{5}}\)

and \(\dfrac{1}{\sqrt{5}}\cdot\left(-\dfrac{\sqrt{5}}{2}\right) = -\dfrac{1}{2}\).

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 2: Polynomials – Exercise 2.4 | Detailed Answers