1. In Fig. 6.2, \(\angle BAC = 90^\circ\) and \(AD \perp BC\). Then,

\(BD\cdot CD = BC^2\)
\(AB\cdot AC = BC^2\)
\(BD\cdot CD = AD^2\)
\(AB\cdot AC = AD^2\)
2. The diagonals of a rhombus are 16 cm and 12 cm. The side length is
9 cm
10 cm
8 cm
20 cm
3. If \(\triangle ABC \sim \triangle EDF\) and \(\triangle ABC\) is not similar to \(\triangle DEF\), which is not true?
\(BC\cdot EF = AC\cdot FD\)
\(AB\cdot EF = AC\cdot DE\)
\(BC\cdot DE = AB\cdot EF\)
\(BC\cdot DE = AB\cdot FD\)
4. If in triangles \(ABC\) and \(PQR\),
\(\dfrac{AB}{QR} = \dfrac{BC}{PR} = \dfrac{CA}{PQ}\), then
\(\triangle PQR \sim \triangle CAB\)
\(\triangle PQR \sim \triangle ABC\)
\(\triangle CBA \sim \triangle PQR\)
\(\triangle BCA \sim \triangle PQR\)
5. In Fig. 6.3, lines \(AC\) and \(BD\) intersect at \(P\). Given \(PA=6\,\text{cm},\; PB=3\,\text{cm},\; PC=2.5\,\text{cm},\; PD=5\,\text{cm},\; \(\angle APB=50^\circ\) and \(\angle CDP=30^\circ\). Find \(\angle PBA\).

50°
30°
60°
100°
6. In triangles \(DEF\) and \(PQR\), if \(\angle D = \angle Q\) and \(\angle R = \angle E\), which is not true?
\(\dfrac{EF}{PR} = \dfrac{DF}{PQ}\)
\(\dfrac{DE}{PQ} = \dfrac{EF}{RP}\)
\(\dfrac{DE}{QR} = \dfrac{DF}{PQ}\)
\(\dfrac{EF}{RP} = \dfrac{DE}{QR}\)
7. In triangles \(ABC\) and \(DEF\), if \(\angle B=\angle E\), \(\angle F=\angle C\) and \(AB=3\,DE\), the triangles are
congruent but not similar
similar but not congruent
neither
congruent as well as similar
8. Given \(\triangle ABC \sim \triangle PQR\) and \(\dfrac{BC}{QR}=\dfrac{1}{3}\), then \(\dfrac{\operatorname{ar}(PRQ)}{\operatorname{ar}(BCA)}\) equals
9
3
\(\dfrac{1}{3}\)
\(\dfrac{1}{9}\)
9. Given \(\triangle ABC \sim \triangle DFE\) with \(\angle A=30^\circ\), \(\angle C=50^\circ\), \(AB=5\,\text{cm}\), \(AC=8\,\text{cm}\) and \(DF=7.5\,\text{cm}\). Which is true?
\(DE=12\,\text{cm},\; \angle F=50^\circ\)
\(DE=12\,\text{cm},\; \angle F=100^\circ\)
\(EF=12\,\text{cm},\; \angle D=100^\circ\)
\(EF=12\,\text{cm},\; \angle D=30^\circ\)
10. If in triangles \(ABC\) and \(DEF\), \(\dfrac{AB}{DE}=\dfrac{BC}{FD}\), then they will be similar when
\(\angle B=\angle E\)
\(\angle A=\angle D\)
\(\angle B=\angle D\)
\(\angle A=\angle F\)
11. If \(\triangle ABC \sim \triangle QRP\) and \(\dfrac{\operatorname{ar}(ABC)}{\operatorname{ar}(PQR)}=\dfrac{9}{4}\), with \(AB=18\,\text{cm}\) and \(BC=15\,\text{cm}\), then \(PR\) equals
10 cm
12 cm
\(\dfrac{20}{3}\) cm
8 cm
12. If \(S\) is a point on side \(PQ\) of \(\triangle PQR\) such that \(PS=QS=RS\), then
\(PR\cdot QR = RS^2\)
\(QS^2 + RS^2 = QR^2\)
\(PR^2 + QR^2 = PQ^2\)
\(PS^2 + RS^2 = PR^2\)