The distance of the point \(P(-6,8)\) from the origin is
8
\(2\sqrt{7}\)
10
6

We want to find the distance of the point \(P(-6,8)\) from the origin \((0,0)\).
Step 1: Recall the distance formula between two points \((x_1,y_1)\) and \((x_2,y_2)\):
\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
Step 2: Here the origin is \((0,0)\) and the point is \((-6,8)\).
So, \(x_1 = 0,\; y_1 = 0,\; x_2 = -6,\; y_2 = 8\).
Step 3: Substitute these values into the formula:
\[ d = \sqrt{(-6 - 0)^2 + (8 - 0)^2} \]
Step 4: Simplify each term:
\((-6 - 0)^2 = (-6)^2 = 36\)
\((8 - 0)^2 = (8)^2 = 64\)
Step 5: Add the results:
\[ d = \sqrt{36 + 64} = \sqrt{100} \]
Step 6: Find the square root:
\[ d = 10 \]
Final Answer: The distance is 10 units. So the correct option is C.