NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 7: Coordinate Geometry - Exercise 7.3
Question 12

Question. 12

If \(P(9a-2,-b)\) divides the segment joining \(A(3a+1,-3)\) and \(B(8a,5)\) in the ratio \(3:1\), find \(a\) and \(b\).

Answer:

\(a=1,\ b=-3\)

Detailed Answer with Explanation:

Step 1: Recall the section formula

If a point \(P(x, y)\) divides the line joining two points \(A(x_1, y_1)\) and \(B(x_2, y_2)\) in the ratio \(m:n\), then

\[ x = \dfrac{mx_2 + nx_1}{m+n}, \quad y = \dfrac{my_2 + ny_1}{m+n} \]

Step 2: Write the given data

  • \(A(3a+1, -3)\)
  • \(B(8a, 5)\)
  • Point \(P(9a-2, -b)\)
  • Ratio \(3:1\) → so \(m=3,\ n=1\)

Step 3: Apply section formula for the x-coordinate

\[ x_P = \dfrac{3(8a) + 1(3a+1)}{3+1} = \dfrac{24a + 3a + 1}{4} = \dfrac{27a + 1}{4} \]

But we are also given that \(x_P = 9a - 2\).

So,

\[ 9a - 2 = \dfrac{27a + 1}{4} \]

Step 4: Solve for a

Multiply both sides by 4:

\[ 4(9a - 2) = 27a + 1 \] \[ 36a - 8 = 27a + 1 \] \[ 36a - 27a = 1 + 8 \] \[ 9a = 9 \quad \Rightarrow \quad a = 1 \]

Step 5: Apply section formula for the y-coordinate

\[ y_P = \dfrac{3(5) + 1(-3)}{4} = \dfrac{15 - 3}{4} = \dfrac{12}{4} = 3 \]

But we are given \(y_P = -b\).

\[ -b = 3 \quad \Rightarrow \quad b = -3 \]

Final Answer: \(a = 1, \ b = -3\)

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 7: Coordinate Geometry – Exercise 7.3 | Detailed Answers