The value of \(\left[\dfrac{\sin^2 22^\circ+\sin^2 68^\circ}{\cos^2 22^\circ+\cos^2 68^\circ}+\sin^2 63^\circ+\cos63^\circ\sin27^\circ\right]\) is
3
2
1
0
![The value of \(\left[\dfrac{\sin^2 22^\circ+\sin^2 68^\circ}{\cos^2 22^\circ+\cos^2 68^\circ}+\sin^2 63^\circ+\cos63^\circ\sin27^\circ\right]\) is 1](/images/ncert/ne-10-maths-8-1-11.png)
Step 1: Look at the first fraction: \[ \dfrac{\sin^2 22^\circ + \sin^2 68^\circ}{\cos^2 22^\circ + \cos^2 68^\circ} \]
Notice that \(68^\circ = 90^\circ - 22^\circ\). So, \(\sin 68^\circ = \cos 22^\circ\).
Therefore, numerator becomes: \(\sin^2 22^\circ + (\cos 22^\circ)^2 = \sin^2 22^\circ + \cos^2 22^\circ = 1\).
Similarly, denominator is: \(\cos^2 22^\circ + (\sin 22^\circ)^2 = 1\).
So the fraction = \(\dfrac{1}{1} = 1\).
Step 2: Now consider the term \(\cos 63^\circ \sin 27^\circ\).
Notice \(27^\circ = 90^\circ - 63^\circ\). So, \(\sin 27^\circ = \cos 63^\circ\).
Therefore, \(\cos 63^\circ \cdot \sin 27^\circ = \cos 63^\circ \cdot \cos 63^\circ = \cos^2 63^\circ\).
Step 3: Look at the other term: \(\sin^2 63^\circ\).
We know the identity: \(\sin^2 \theta + \cos^2 \theta = 1\).
So, \(\sin^2 63^\circ + \cos^2 63^\circ = 1\).
Step 4: Put everything together:
Whole expression = fraction (which is 1) + \(\sin^2 63^\circ + \cos^2 63^\circ\) (which is also 1).
So total = \(1 + 1 = 2\).
Final Answer: \(2\) (Option B)