If \(\cos9\alpha=\sin\alpha\) and \(9\alpha<90^\circ\), then the value of \(\tan5\alpha\) is
\(\dfrac{1}{\sqrt{3}}\)
\(\sqrt{3}\)
1
0

Step 1: Recall the trigonometric identity: \(\sin\theta = \cos(90^\circ - \theta)\).
Step 2: In the question, we are given \(\cos 9\alpha = \sin \alpha\). Using the identity, replace \(\sin\alpha\) by \(\cos(90^\circ - \alpha)\).
So, \(\cos 9\alpha = \cos(90^\circ - \alpha)\).
Step 3: If two cos values are equal, their angles must also be equal (as long as both lie in the given range). Hence, \(9\alpha = 90^\circ - \alpha\).
Step 4: Solve for \(\alpha\):
\(9\alpha + \alpha = 90^\circ\)
\(10\alpha = 90^\circ\)
\(\alpha = 9^\circ\)
Step 5: Now we need \(\tan 5\alpha\).
Substitute \(\alpha = 9^\circ\):
\(\tan 5\alpha = \tan(5 \times 9^\circ) = \tan 45^\circ\).
Step 6: We know \(\tan 45^\circ = 1\).
Final Answer: \(\tan 5\alpha = 1\).