The value of \(\tan1^\circ\tan2^\circ\tan3^\circ\,\cdots\,\tan89^\circ\) is
0
1
2
\(\dfrac{1}{2}\)

Step 1: Write the given product:
\(P = \tan1^\circ \times \tan2^\circ \times \tan3^\circ \times \cdots \times \tan89^\circ\)
Step 2: Recall the trigonometric identity:
\(\tan(90^\circ - \theta) = \cot\theta = \dfrac{1}{\tan\theta}\)
Step 3: Pair the terms in the product. For example:
\(\tan1^\circ \times \tan89^\circ = \tan1^\circ \times \tan(90^\circ - 1^\circ) = \tan1^\circ \times \cot1^\circ = 1\)
\(\tan2^\circ \times \tan88^\circ = 1\)
\(\tan3^\circ \times \tan87^\circ = 1\)
And so on…
Step 4: Continue pairing up all terms this way. Each pair gives value = 1.
Step 5: The only angle left in the middle (which cannot be paired) is:
\(\tan45^\circ = 1\)
Step 6: Multiply everything:
\(P = (1 \times 1 \times 1 \times \cdots) \times 1 = 1\)
Final Answer: The value of the product is 1.