NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.2
Question 6

Question. 6

\((\tan\theta+2)(2\tan\theta+1)=5\tan\theta+\sec^2\theta\).

Answer:

False.

Detailed Answer with Explanation:

Step 1: Expand the left-hand side (LHS).

LHS = \((\tan\theta + 2)(2\tan\theta + 1)\)

Use distributive property: \(a(b+c) = ab + ac\).

= \(\tan\theta(2\tan\theta + 1) + 2(2\tan\theta + 1)\)

= \(2\tan^2\theta + \tan\theta + 4\tan\theta + 2\)

= \(2\tan^2\theta + 5\tan\theta + 2\).

Step 2: Compare with the right-hand side (RHS).

RHS = \(5\tan\theta + \sec^2\theta\).

Step 3: Simplify the LHS using identity.

We know the trigonometric identity: \(1 + \tan^2\theta = \sec^2\theta\).

So, \(2\tan^2\theta + 2 = 2(\tan^2\theta + 1) = 2\sec^2\theta\).

Therefore, LHS = \(5\tan\theta + 2\sec^2\theta\).

Step 4: Final comparison.

LHS = \(5\tan\theta + 2\sec^2\theta\)

RHS = \(5\tan\theta + \sec^2\theta\)

Since \(2\sec^2\theta \neq \sec^2\theta\), the two sides are not equal.

Therefore, the given statement is False.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.2 | Detailed Answers