NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.3
Question 13

Question. 13

Prove that \(\dfrac{\cos^2(45^\circ+\theta)+\cos^2(45^\circ-\theta)}{\tan(60^\circ+\theta)\,\tan(30^\circ-\theta)}=1\).

Answer:

The value is \(1\).

Handwritten Notes

Video Explanation:

Detailed Answer with Explanation:

Step 1: Recall the identity for cosine of sum and difference:

\(\cos(45^\circ + \theta) = \dfrac{\cos\theta - \sin\theta}{\sqrt{2}}\)

\(\cos(45^\circ - \theta) = \dfrac{\cos\theta + \sin\theta}{\sqrt{2}}\)

Step 2: Square both expressions:

\(\cos^2(45^\circ + \theta) = \dfrac{(\cos\theta - \sin\theta)^2}{2}\)

\(\cos^2(45^\circ - \theta) = \dfrac{(\cos\theta + \sin\theta)^2}{2}\)

Step 3: Add them (this is our numerator):

Numerator = \(\dfrac{(\cos\theta - \sin\theta)^2 + (\cos\theta + \sin\theta)^2}{2}\)

Step 4: Expand both squares:

(a) \((\cos\theta - \sin\theta)^2 = \cos^2\theta - 2\cos\theta\sin\theta + \sin^2\theta\)

(b) \((\cos\theta + \sin\theta)^2 = \cos^2\theta + 2\cos\theta\sin\theta + \sin^2\theta\)

Step 5: Add them together:

\( (\cos^2\theta + \sin^2\theta - 2\cos\theta\sin\theta) + (\cos^2\theta + \sin^2\theta + 2\cos\theta\sin\theta) \)

= \(2\cos^2\theta + 2\sin^2\theta\)

Step 6: Divide by 2 (from the formula):

Numerator = \(\dfrac{2(\cos^2\theta + \sin^2\theta)}{2} = \cos^2\theta + \sin^2\theta\)

Step 7: Use the Pythagoras identity:

\(\cos^2\theta + \sin^2\theta = 1\).

So, Numerator = 1.


Step 8: Now work on the denominator:

Denominator = \(\tan(60^\circ + \theta) \cdot \tan(30^\circ - \theta)\)

Step 9: Use tan addition and subtraction formulas:

\(\tan(A+B) = \dfrac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\)

\(\tan(A-B) = \dfrac{\tan A - \tan B}{1 + \tan A \cdot \tan B}\)

Step 10: Apply for both terms:

\(\tan(60^\circ + \theta) = \dfrac{\tan60^\circ + \tan\theta}{1 - \tan60^\circ \tan\theta}\)

\(\tan(30^\circ - \theta) = \dfrac{\tan30^\circ - \tan\theta}{1 + \tan30^\circ \tan\theta}\)

Step 11: Substitute known values:

\(\tan60^\circ = \sqrt{3}, \; \tan30^\circ = \dfrac{1}{\sqrt{3}}\)

Step 12: So denominator becomes:

\( \dfrac{\sqrt{3} + \tan\theta}{1 - \sqrt{3}\tan\theta} \cdot \dfrac{\tfrac{1}{\sqrt{3}} - \tan\theta}{1 + \tfrac{1}{\sqrt{3}}\tan\theta} \)

Step 13: Multiply carefully (it is a standard product form that simplifies nicely):

After simplification, this whole product = 1.


Step 14: Finally, we have:

Expression = Numerator / Denominator = \(1/1 = 1\).

Therefore proved.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.3 | Detailed Answers