Prove that \((\sin\alpha+\cos\alpha)(\tan\alpha+\cot\alpha)=\sec\alpha+\csc\alpha\).
\(\displaystyle (\sin\alpha+\cos\alpha)(\tan\alpha+\cot\alpha)=\sec\alpha+\csc\alpha\).
Step 1: Write down what we need to prove.
We need to show that:
\[(\sin\alpha + \cos\alpha)(\tan\alpha + \cot\alpha) = \sec\alpha + \csc\alpha\]
Step 2: Expand the brackets on the left-hand side.
\((\sin\alpha+\cos\alpha)(\tan\alpha+\cot\alpha)\)
= \(\sin\alpha\tan\alpha + \sin\alpha\cot\alpha + \cos\alpha\tan\alpha + \cos\alpha\cot\alpha\)
Step 3: Write tan and cot in terms of sin and cos.
\(\tan\alpha = \dfrac{\sin\alpha}{\cos\alpha}, \; \cot\alpha = \dfrac{\cos\alpha}{\sin\alpha}\)
Step 4: Substitute these values.
= \(\sin\alpha \cdot \dfrac{\sin\alpha}{\cos\alpha} + \sin\alpha \cdot \dfrac{\cos\alpha}{\sin\alpha} + \cos\alpha \cdot \dfrac{\sin\alpha}{\cos\alpha} + \cos\alpha \cdot \dfrac{\cos\alpha}{\sin\alpha}\)
Step 5: Simplify each term carefully.
So the expression becomes:
\(= \dfrac{\sin^2\alpha}{\cos\alpha} + \cos\alpha + \sin\alpha + \dfrac{\cos^2\alpha}{\sin\alpha}\)
Step 6: Rearrange terms to group fractions together.
\(= \left(\dfrac{\sin^2\alpha}{\cos\alpha} + \cos\alpha\right) + \left(\dfrac{\cos^2\alpha}{\sin\alpha} + \sin\alpha\right)\)
Step 7: Simplify each group.
Step 8: Combine results.
= \(\sec\alpha + \csc\alpha\)
Therefore proved.