NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.3
Question 5

Question. 5

Prove that \((\sqrt{3}+1)(3-\cot 30^\circ)=\tan^3 60^\circ-2\sin 60^\circ\).

Answer:

Both sides equal \(2\sqrt{3}\).

Handwritten Notes

Video Explanation:

Detailed Answer with Explanation:

Step 1: Write down what is given.

We need to prove that

\[(\sqrt{3}+1)(3-\cot 30^\circ) = \tan^3 60^\circ - 2\sin 60^\circ.\]

Step 2: Recall trigonometric values.

  • \(\cot 30^\circ = \sqrt{3}\)
  • \(\tan 60^\circ = \sqrt{3}\)
  • \(\sin 60^\circ = \dfrac{\sqrt{3}}{2}\)

Step 3: Simplify the Left-Hand Side (LHS).

LHS = \((\sqrt{3} + 1)(3 - \cot 30^\circ)\)

Substitute \(\cot 30^\circ = \sqrt{3}\):

LHS = \((\sqrt{3} + 1)(3 - \sqrt{3})\)

Now expand using distributive law:

= \( (\sqrt{3} \times 3) + (1 \times 3) - (\sqrt{3} \times \sqrt{3}) - (1 \times \sqrt{3}) \)

= \( 3\sqrt{3} + 3 - 3 - \sqrt{3} \)

= \( (3\sqrt{3} - \sqrt{3}) + (3 - 3) \)

= \( 2\sqrt{3} \)

So, LHS = \(2\sqrt{3}\).

Step 4: Simplify the Right-Hand Side (RHS).

RHS = \( \tan^3 60^\circ - 2\sin 60^\circ \)

Substitute values:

\( \tan 60^\circ = \sqrt{3} \Rightarrow \tan^3 60^\circ = (\sqrt{3})^3 = 3\sqrt{3} \)

\( \sin 60^\circ = \dfrac{\sqrt{3}}{2} \Rightarrow 2\sin 60^\circ = 2 \times \dfrac{\sqrt{3}}{2} = \sqrt{3} \)

So RHS = \( 3\sqrt{3} - \sqrt{3} = 2\sqrt{3} \)

Step 5: Compare both sides.

LHS = \(2\sqrt{3}\), RHS = \(2\sqrt{3}\)

Since both are equal, the given equation is proved.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.3 | Detailed Answers