NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.4
Question 10

Question. 10

If \(\sin\theta+\cos\theta=p\) and \(\sec\theta+\csc\theta=q\), prove that \(q(p^2-1)=2p\).

Answer:

\(q(p^2-1)=2p\).

Detailed Answer with Explanation:

Step 1: We are given two equations:

  • \(\sin\theta + \cos\theta = p\)
  • \(\sec\theta + \csc\theta = q\)

Step 2: First, let us square the first equation:

\[(\sin\theta + \cos\theta)^2 = p^2\]

Expanding: \(\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = p^2\).

Step 3: Recall the identity: \(\sin^2\theta + \cos^2\theta = 1\).

So: \(1 + 2\sin\theta\cos\theta = p^2\).

Step 4: Rearranging, we get:

\(p^2 - 1 = 2\sin\theta\cos\theta\).   (Equation A)

Step 5: Now, consider the second given expression:

\(q = \sec\theta + \csc\theta\).

Write \(\sec\theta = \dfrac{1}{\cos\theta}\), and \(\csc\theta = \dfrac{1}{\sin\theta}\).

So: \(q = \dfrac{1}{\cos\theta} + \dfrac{1}{\sin\theta}\).

Step 6: Take LCM:

\(q = \dfrac{\sin\theta + \cos\theta}{\sin\theta \cos\theta}\).

Step 7: But from Step 1, \(\sin\theta + \cos\theta = p\).

So: \(q = \dfrac{p}{\sin\theta \cos\theta}\).   (Equation B)

Step 8: Now, multiply Equation (A) and (B):

\[ q(p^2 - 1) = \dfrac{p}{\sin\theta\cos\theta} \times (2\sin\theta\cos\theta) \]

Step 9: The \(\sin\theta\cos\theta\) cancels out:

\[ q(p^2 - 1) = 2p \]

Final Answer: Hence proved.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.4 | Detailed Answers