NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.4
Question 11

Question. 11

If \(a\sin\theta+b\cos\theta=c\), prove that \(a\cos\theta-b\sin\theta=\pm\sqrt{a^2+b^2-c^2}\).

Answer:

\(a\cos\theta-b\sin\theta=\pm\sqrt{a^2+b^2-c^2}\).

Detailed Answer with Explanation:

Step 1: We are given the relation:

\[ a\sin\theta + b\cos\theta = c. \]

Step 2: Let us consider the expression we want to prove:

\[ a\cos\theta - b\sin\theta. \]

Our goal is to show it equals \( \pm \sqrt{a^2 + b^2 - c^2} \).

Step 3: To connect the two expressions, square and add them:

\[(a\sin\theta + b\cos\theta)^2 + (a\cos\theta - b\sin\theta)^2.\]

Step 4: Expand each square.

First part: \((a\sin\theta + b\cos\theta)^2 = a^2\sin^2\theta + 2ab\sin\theta\cos\theta + b^2\cos^2\theta.\)

Second part: \((a\cos\theta - b\sin\theta)^2 = a^2\cos^2\theta - 2ab\sin\theta\cos\theta + b^2\sin^2\theta.\)

Step 5: Add both results together:

\[ (a^2\sin^2\theta + 2ab\sin\theta\cos\theta + b^2\cos^2\theta) \\ + (a^2\cos^2\theta - 2ab\sin\theta\cos\theta + b^2\sin^2\theta). \]

Step 6: Simplify the terms.

  • \(+2ab\sin\theta\cos\theta\) and \(-2ab\sin\theta\cos\theta\) cancel out.
  • Combine like terms: \(a^2(\sin^2\theta + \cos^2\theta) + b^2(\sin^2\theta + \cos^2\theta).\)

Step 7: Use the identity \(\sin^2\theta + \cos^2\theta = 1\).

So the sum becomes: \(a^2 + b^2.\)

Step 8: Now replace the first square with the given condition:

Since \(a\sin\theta + b\cos\theta = c\), we have \((a\sin\theta + b\cos\theta)^2 = c^2.\)

Step 9: Therefore,

\[ c^2 + (a\cos\theta - b\sin\theta)^2 = a^2 + b^2. \]

Step 10: Rearranging,

\[ (a\cos\theta - b\sin\theta)^2 = a^2 + b^2 - c^2. \]

Step 11: Taking square roots on both sides,

\[ a\cos\theta - b\sin\theta = \pm \sqrt{a^2 + b^2 - c^2}. \]

Hence Proved.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.4 | Detailed Answers