NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.4
Question 12

Question. 12

Prove that \(\dfrac{1+\sec\theta-\tan\theta}{1+\sec\theta+\tan\theta}=\dfrac{1-\sin\theta}{\cos\theta}\).

Answer:

Identity holds.

Detailed Answer with Explanation:

Step 1: We are asked to prove:

\[ \dfrac{1 + \sec\theta - \tan\theta}{1 + \sec\theta + \tan\theta} = \dfrac{1 - \sin\theta}{\cos\theta}. \]

Step 2: To simplify the left-hand side (LHS), multiply numerator and denominator by the conjugate of the denominator. The denominator is \(1 + \sec\theta + \tan\theta\). Its conjugate is \(1 + \sec\theta - \tan\theta\).

So,

\[ \text{LHS} = \dfrac{1 + \sec\theta - \tan\theta}{1 + \sec\theta + \tan\theta} \times \dfrac{1 + \sec\theta - \tan\theta}{1 + \sec\theta - \tan\theta}. \]

Step 3: Now numerator becomes:

\[(1 + \sec\theta - \tan\theta)^2.\]

The denominator becomes a difference of squares:

\[(1 + \sec\theta)^2 - (\tan\theta)^2.\]

Step 4: Expand the denominator.

\[(1 + \sec\theta)^2 - \tan^2\theta = 1 + 2\sec\theta + \sec^2\theta - \tan^2\theta.\]

Step 5: Use the Pythagoras identity:

\[1 + \tan^2\theta = \sec^2\theta.\]

This means \(\sec^2\theta - \tan^2\theta = 1\).

So denominator = \(1 + 2\sec\theta + 1 = 2(1 + \sec\theta).\)

Step 6: Numerator is \((1 + \sec\theta - \tan\theta)^2\). Take square root idea to simplify later: keep it as is for now.

Step 7: So overall we have:

\[ \text{LHS} = \dfrac{(1 + \sec\theta - \tan\theta)^2}{2(1 + \sec\theta)}. \]

Step 8: Expand numerator:

\[(1 + \sec\theta - \tan\theta)^2 = (1 + \sec\theta)^2 + \tan^2\theta - 2\tan\theta(1 + \sec\theta).\]

Step 9: Again, replace \(\tan^2\theta = \sec^2\theta - 1.\)

So numerator = \[(1 + 2\sec\theta + \sec^2\theta) + (\sec^2\theta - 1) - 2\tan\theta(1 + \sec\theta).\]

Simplify: numerator = \[2\sec^2\theta + 2\sec\theta - 2\tan\theta(1 + \sec\theta).\]

Step 10: Take common factor 2 from numerator:

Numerator = \[2(\sec^2\theta + \sec\theta - \tan\theta(1 + \sec\theta)).\]

So,

\[ \text{LHS} = \dfrac{2(\sec^2\theta + \sec\theta - \tan\theta(1 + \sec\theta))}{2(1 + \sec\theta)}. \]

Cancel 2:

\[ = \dfrac{\sec^2\theta + \sec\theta - \tan\theta(1 + \sec\theta)}{1 + \sec\theta}. \]

Step 11: Split numerator:

\[= \dfrac{\sec^2\theta + \sec\theta}{1 + \sec\theta} - \dfrac{\tan\theta(1 + \sec\theta)}{1 + \sec\theta}.\]

Cancel terms:

\[= \sec\theta - \tan\theta.\]

Step 12: Write in terms of sine and cosine:

\[\sec\theta - \tan\theta = \dfrac{1}{\cos\theta} - \dfrac{\sin\theta}{\cos\theta}.\]

Combine: \[= \dfrac{1 - \sin\theta}{\cos\theta}.\]

Step 13: This is exactly the Right-Hand Side (RHS).

Therefore, identity is proved.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.4 | Detailed Answers