NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 9: Circles - Exercise 9.1
Question 2

Question.  2

2. In Fig. 9.3, if \(\angle AOB = 125^\circ\), then \(\angle COD\) is equal to

Fig. 9.3

(A)

\(62.5^\circ\)

(B)

\(45^\circ\)

(C)

\(35^\circ\)

(D)

\(55^\circ\)

Detailed Answer with Explanation:

Step 1: The figure shows a circle with centre O. The angles \(\angle AOB\) and \(\angle COD\) are central angles that lie on a straight line (diameter).

Step 2: Angles on a straight line always add up to \(180^\circ\). This is called the linear pair property.

Step 3: Here, \(\angle AOB + \angle COD = 180^\circ\).

Step 4: Substitute the given value: \(125^\circ + \angle COD = 180^\circ\).

Step 5: Subtract \(125^\circ\) from both sides: \(\angle COD = 180^\circ - 125^\circ = 55^\circ\).

Final Answer: \(\angle COD = 55^\circ\). So, the correct option is D.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 9: Circles – Exercise 9.1 | Detailed Answers