The perimeter of a triangle with vertices \((0,4),(0,0),(3,0)\) is
5
12
11
\(7+\sqrt{5}\)

Step 1: The given vertices of the triangle are:
Step 2: Use the distance formula to find the length of each side.
The distance between two points \((x_1,y_1)\) and \((x_2,y_2)\) is:
\(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
Step 3: Find side AB.
\(A(0,4), B(0,0)\)
\(AB = \sqrt{(0-0)^2 + (0-4)^2} = \sqrt{0 + 16} = 4\,\text{units}\)
Step 4: Find side BC.
\(B(0,0), C(3,0)\)
\(BC = \sqrt{(3-0)^2 + (0-0)^2} = \sqrt{9 + 0} = 3\,\text{units}\)
Step 5: Find side AC.
\(A(0,4), C(3,0)\)
\(AC = \sqrt{(3-0)^2 + (0-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5\,\text{units}\)
Step 6: Add all the three sides to get the perimeter.
Perimeter = AB + BC + AC = \(4 + 3 + 5 = 12\,\text{units}\)
Final Answer: The perimeter of the triangle is 12 units.