NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 7: Coordinate Geometry - Exercise 7.2
Question 10

Question. 10

Points \(A(-6,10),\ B(-4,6),\ C(3,-8)\) are collinear such that \(AB=\dfrac{2}{9}\,AC\).

Answer:

True.

Detailed Answer with Explanation:

Step 1: Recall the distance formula.

The distance between two points \((x_1,y_1)\) and \((x_2,y_2)\) is:

\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Step 2: Find the distance AB.

Points are \(A(-6,10)\) and \(B(-4,6)\).

\[ AB = \sqrt{((-4)-(-6))^2 + (6-10)^2} = \sqrt{(2)^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5} \]

Step 3: Find the distance AC.

Points are \(A(-6,10)\) and \(C(3,-8)\).

\[ AC = \sqrt{((3)-(-6))^2 + (-8-10)^2} = \sqrt{(9)^2 + (-18)^2} = \sqrt{81 + 324} = \sqrt{405} = 9\sqrt{5} \]

Step 4: Compare the ratio \(\dfrac{AB}{AC}\).

\[ \dfrac{AB}{AC} = \dfrac{2\sqrt{5}}{9\sqrt{5}} = \dfrac{2}{9} \]

This matches the condition given in the question.

Step 5: Check collinearity using area of triangle.

Three points are collinear if the area of the triangle formed by them is 0.

For \(A(x_1,y_1)\), \(B(x_2,y_2)\), \(C(x_3,y_3)\):

\(\text{Area} = \dfrac{1}{2}\left|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)\right|\).

Substitute \(A(-6,10)\), \(B(-4,6)\), \(C(3,-8)\):

\(\text{Area} = \dfrac{1}{2}\left|(-6)(6-(-8)) + (-4)((-8)-10) + 3(10-6)\right|\)

Now compute each term:

  • \((-6)(6-(-8)) = (-6)(14) = -84\)
  • \((-4)((-8)-10) = (-4)(-18) = 72\)
  • \(3(10-6) = 3(4) = 12\)

Add them: \(-84 + 72 + 12 = 0\)

So, \(\text{Area} = \dfrac{1}{2}|0| = 0\).

Step 6: Final Conclusion.

Since the area is 0, points A, B, and C are collinear, and from Step 4 we also have \(AB = \tfrac{2}{9}AC\). Hence, the statement is True.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 7: Coordinate Geometry – Exercise 7.2 | Detailed Answers