NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 7: Coordinate Geometry - Exercise 7.4
Question 2

Question. 2

\(A(6,1),\ B(8,2)\) and \(C(9,4)\) are three vertices of a parallelogram \(ABCD\). If \(E\) is the midpoint of \(DC\), find the area of \(\triangle ADE\).

Answer:

Area \(= \dfrac{3}{4}\) square units.

Detailed Answer with Explanation:

Step 1: Let the fourth vertex be \(D(x_4,y_4)\).

Step 2: In a parallelogram, the diagonals bisect each other, so the midpoint of \(BD\) equals the midpoint of \(AC\).

Step 3: Midpoint of \(BD\) is

\(\left(\dfrac{x_4+8}{2},\dfrac{y_4+2}{2}\right)\).

Step 4: Midpoint of \(AC\) is

\(\left(\dfrac{6+9}{2},\dfrac{1+4}{2}\right)=\left(\dfrac{15}{2},\dfrac{5}{2}\right)\).

Step 5: Equate the midpoints:

\(\dfrac{x_4+8}{2}=\dfrac{15}{2}\Rightarrow x_4+8=15\Rightarrow x_4=7\)

\(\dfrac{y_4+2}{2}=\dfrac{5}{2}\Rightarrow y_4+2=5\Rightarrow y_4=3\)

So, \(D=(7,3)\).

Step 6: Since \(E\) is the midpoint of \(DC\),

\(E=\left(\dfrac{7+9}{2},\dfrac{3+4}{2}\right)=\left(\dfrac{16}{2},\dfrac{7}{2}\right)=\left(8,\dfrac{7}{2}\right)\).

Step 7: Now find area of \(\triangle ADE\) using the coordinate area formula:

\(\text{Area} = \dfrac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|\).

Here \(A(6,1),\ D(7,3),\ E\left(8,\dfrac{7}{2}\right)\):

\(\text{Area} = \dfrac{1}{2}\left|6\left(3-\dfrac{7}{2}\right)+7\left(\dfrac{7}{2}-1\right)+8(1-3)\right|\)

Step 8: Simplify:

\(3-\dfrac{7}{2}=-\dfrac{1}{2},\quad \dfrac{7}{2}-1=\dfrac{5}{2},\quad 1-3=-2\)

\(\Rightarrow \text{Area} = \dfrac{1}{2}\left|6\left(-\dfrac{1}{2}\right)+7\left(\dfrac{5}{2}\right)+8(-2)\right| \)

\( = \dfrac{1}{2}\left|-3+\dfrac{35}{2}-16\right| \)

\(= \dfrac{1}{2}\left|\dfrac{-6+35-32}{2}\right| = \dfrac{1}{2}\left|\dfrac{-3}{2}\right| = \dfrac{1}{2}\cdot\dfrac{3}{2}=\dfrac{3}{4}\)

Final Answer: \(\text{Area}(\triangle ADE)=\dfrac{3}{4}\) square units.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 7: Coordinate Geometry – Exercise 7.4 | Detailed Answers