NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 7: Coordinate Geometry - Exercise 7.4
Question 3

Question. 3

The points \(A(x_1,y_1),\ B(x_2,y_2)\) and \(C(x_3,y_3)\) are the vertices of \(\triangle ABC\).

(i) The median from \(A\) meets \(BC\) at \(D\). Find \(D\).

(ii) Find the point \(P\) on \(AD\) such that \(AP:PD=2:1\).

(iii) Find points \(Q\) and \(R\) on medians \(BE\) and \(CF\) respectively such that \(BQ:QE=2:1\) and \(CR:RF=2:1\).

(iv) Hence, write the coordinates of the centroid of \(\triangle ABC\).

Answer:

(i) \(D\bigl(\dfrac{x_2+x_3}{2},\;\dfrac{y_2+y_3}{2}\bigr)\).

(ii) \(P\bigl(\dfrac{x_1+x_2+x_3}{3},\;\dfrac{y_1+y_2+y_3}{3}\bigr)\).

(iii) \(Q\) and \(R\) are also \(\bigl(\dfrac{x_1+x_2+x_3}{3},\;\dfrac{y_1+y_2+y_3}{3}\bigr)\).

(iv) Centroid \(G\bigl(\dfrac{x_1+x_2+x_3}{3},\;\dfrac{y_1+y_2+y_3}{3}\bigr)\).

Detailed Answer with Explanation:

(i) Finding point D

The median from \(A\) meets side \(BC\) at its midpoint \(D\).

So \(D\) is the midpoint of \(B(x_2,y_2)\) and \(C(x_3,y_3)\):

\[ D\left(\dfrac{x_2+x_3}{2},\;\dfrac{y_2+y_3}{2}\right) \]

(ii) Finding point P on AD

Point \(P\) lies on \(AD\) such that \(AP:PD = 2:1\). So \(P\) divides the segment joining \(A(x_1,y_1)\) and \(D\left(\dfrac{x_2+x_3}{2},\dfrac{y_2+y_3}{2}\right)\) internally in the ratio \(2:1\).

Using the section formula:

\[ P = \left(\dfrac{2x_D + 1x_A}{3},\;\dfrac{2y_D + 1y_A}{3}\right) \]

Substitute \(x_D=\dfrac{x_2+x_3}{2},\; y_D=\dfrac{y_2+y_3}{2}\):

\[ P = \left(\dfrac{2\cdot\dfrac{x_2+x_3}{2} + x_1}{3},\;\dfrac{2\cdot\dfrac{y_2+y_3}{2} + y_1}{3}\right) \]

Simplifying:

\[ P\left(\dfrac{x_1+x_2+x_3}{3},\;\dfrac{y_1+y_2+y_3}{3}\right) \]

(iii) Finding points Q and R on the other medians

First find the midpoints of the other two sides.

Midpoint of \(AC\): Let this be \(E\).

\[ E\left(\dfrac{x_1+x_3}{2},\;\dfrac{y_1+y_3}{2}\right) \]

Midpoint of \(AB\): Let this be \(F\).

\[ F\left(\dfrac{x_1+x_2}{2},\;\dfrac{y_1+y_2}{2}\right) \]

Point Q on median BE: \(Q\) divides \(BE\) internally in the ratio \(BQ:QE = 2:1\).

Using section formula between \(B(x_2,y_2)\) and \(E\left(\dfrac{x_1+x_3}{2},\dfrac{y_1+y_3}{2}\right)\):

\[ Q = \left(\dfrac{2x_E + 1x_B}{3},\;\dfrac{2y_E + 1y_B}{3}\right) \]

Substitute \(x_E=\dfrac{x_1+x_3}{2},\; y_E=\dfrac{y_1+y_3}{2}\):

\[ Q = \left(\dfrac{2\cdot\dfrac{x_1+x_3}{2} + x_2}{3},\;\dfrac{2\cdot\dfrac{y_1+y_3}{2} + y_2}{3}\right) = \left(\dfrac{x_1+x_2+x_3}{3},\;\dfrac{y_1+y_2+y_3}{3}\right) \]

Point R on median CF: \(R\) divides \(CF\) internally in the ratio \(CR:RF = 2:1\).

Using section formula between \(C(x_3,y_3)\) and \(F\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)\):

\[ R = \left(\dfrac{2x_F + 1x_C}{3},\;\dfrac{2y_F + 1y_C}{3}\right) \]

Substitute \(x_F=\dfrac{x_1+x_2}{2},\; y_F=\dfrac{y_1+y_2}{2}\):

\[ R = \left(\dfrac{2\cdot\dfrac{x_1+x_2}{2} + x_3}{3},\;\dfrac{2\cdot\dfrac{y_1+y_2}{2} + y_3}{3}\right) = \left(\dfrac{x_1+x_2+x_3}{3},\;\dfrac{y_1+y_2+y_3}{3}\right) \]

(iv) Centroid of the triangle

The centroid is the common point of intersection of all three medians.

Since \(P\), \(Q\), and \(R\) all have the same coordinates, this common point is the centroid \(G\):

\[ G\left(\dfrac{x_1+x_2+x_3}{3},\;\dfrac{y_1+y_2+y_3}{3}\right) \]

Final Note: The centroid coordinates are simply the average of the x-coordinates and the average of the y-coordinates of the three vertices.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 7: Coordinate Geometry – Exercise 7.4 | Detailed Answers