NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 7: Coordinate Geometry - Exercise 7.4
Question 4

Question. 4

The points \(A(1,-2),\ B(2,3),\ C(a,2)\) and \(D(-4,-3)\) form a parallelogram. Find \(a\) and the height of the parallelogram taking \(AB\) as the base.

Answer:

\(a=-3\) and the height (on base \(AB\)) is \(\dfrac{24}{\sqrt{26}}\).

Detailed Answer with Explanation:

Step 1: In a parallelogram, diagonals bisect each other. So, midpoint of \(AC\) = midpoint of \(BD\).

Step 2: Midpoint of \(AC\), where \(A(1,-2)\) and \(C(a,2)\):

\(M_{AC}=\left(\dfrac{1+a}{2},\dfrac{-2+2}{2}\right)=\left(\dfrac{1+a}{2},0\right)\).

Step 3: Midpoint of \(BD\), where \(B(2,3)\) and \(D(-4,-3)\):

\(M_{BD}=\left(\dfrac{2+(-4)}{2},\dfrac{3+(-3)}{2}\right)=(-1,0)\).

Step 4: Equate x-coordinates of the midpoints:

\(\dfrac{1+a}{2}=-1 \Rightarrow 1+a=-2 \Rightarrow a=-3\).

Step 5: To find the height on base \(AB\), first find the area using the area formula of a triangle (as shown in the method).

The parallelogram \(ABCD\) is made of two equal triangles, so:

\(\text{Area of parallelogram} = 2\times \text{Area of }\triangle ABD\).

Step 6: Find the area of \(\triangle ABD\) using coordinates:

\[\text{Area}(\triangle ABD)=\dfrac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|\]

Here \(A(1,-2),\ B(2,3),\ D(-4,-3)\):

\(\text{Area}(\triangle ABD)=\dfrac{1}{2}\left|1(3-(-3)) + 2((-3)-(-2)) + (-4)((-2)-3)\right|\)

\(=\dfrac{1}{2}\left|1\cdot 6 + 2\cdot(-1) + (-4)\cdot(-5)\right| =\dfrac{1}{2}\left|6-2+20\right| =\dfrac{1}{2}\cdot 24 =12\)

Step 7: Therefore,

\(\text{Area of parallelogram} = 2\times 12 = 24\) square units.

Step 8: Now find the base \(AB\):

\(AB=\sqrt{(2-1)^2+(3-(-2))^2}=\sqrt{1^2+5^2}=\sqrt{26}\).

Step 9: Use \(\text{Area} = \text{base} \times \text{height}\):

\(24 = \sqrt{26}\cdot h \Rightarrow h=\dfrac{24}{\sqrt{26}}\).

Final Answer: \(a=-3\) and height on base \(AB\) is \(\dfrac{24}{\sqrt{26}}\).

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 7: Coordinate Geometry – Exercise 7.4 | Detailed Answers