If \(\sin A=\dfrac{1}{2}\), then the value of \(\cot A\) is
\(\sqrt{3}\)
\(\dfrac{1}{\sqrt{3}}\)
\(\dfrac{\sqrt{3}}{2}\)
1

Step 1: Recall the definition of sine.
\(\sin A = \dfrac{\text{opposite side}}{\text{hypotenuse}}\).
We are given \(\sin A = \dfrac{1}{2}\).
Step 2: Think about the standard angles (30°, 45°, 60°) where sine values are commonly used.
We know: \(\sin 30^\circ = \dfrac{1}{2}\).
So, \(A = 30^\circ\).
Step 3: Now recall the formula for cotangent.
\(\cot A = \dfrac{\cos A}{\sin A}\).
Step 4: At \(A = 30^\circ\),
\(\cos 30^\circ = \dfrac{\sqrt{3}}{2}\) and \(\sin 30^\circ = \dfrac{1}{2}\).
Step 5: Substitute these values:
\(\cot 30^\circ = \dfrac{\cos 30^\circ}{\sin 30^\circ} = \dfrac{\tfrac{\sqrt{3}}{2}}{\tfrac{1}{2}}\).
Step 6: Simplify the fraction:
\(\dfrac{\tfrac{\sqrt{3}}{2}}{\tfrac{1}{2}} = \sqrt{3}\).
Final Answer: \(\cot A = \sqrt{3}\).