The value of \([\csc(75^\circ+\theta)-\sec(15^\circ-\theta)-\tan(55^\circ+\theta)+\cot(35^\circ-\theta)]\) is
\(-1\)
0
1
\(\dfrac{3}{2}\)
![The value of \([\csc(75^\circ+\theta)-\sec(15^\circ-\theta)-\tan(55^\circ+\theta)+\cot(35^\circ-\theta)]\) is 1](/images/ncert/ne-10-maths-8-1-3.png)
Step 1: Write the given expression clearly.
\[ E = \csc(75^\circ + \theta) - \sec(15^\circ - \theta) - \tan(55^\circ + \theta) + \cot(35^\circ - \theta) \]
Step 2: Recall the trigonometric identities:
Step 3: Try to write angles so they fit the form \(90^\circ - x\).
Notice that:
Step 4: Apply the identities:
Step 5: Substitute these results back into \(E\):
\[ E = \sec(15^\circ - \theta) - \sec(15^\circ - \theta) - \cot(35^\circ - \theta) + \cot(35^\circ - \theta) \]
Step 6: Simplify. Each term cancels with its opposite:
\[ E = 0 \]
Final Answer: The value of the expression is 0.