NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.2
Question 4

Question. 4

\(\sqrt{1-\cos^2\theta}\;\sec^2\theta=\tan\theta\).

Answer:

False.

Detailed Answer with Explanation:

Let us check the statement step by step:

Step 1: Recall the identity:

\(\sin^2\theta + \cos^2\theta = 1\).

So, \(1 - \cos^2\theta = \sin^2\theta\).

Step 2: Now take the square root:

\(\sqrt{1 - \cos^2\theta} = \sqrt{\sin^2\theta} = |\sin\theta|\).

(We use absolute value because square root always gives a non-negative result.)

Step 3: Write the Left Hand Side (LHS):

\(LHS = \sqrt{1 - \cos^2\theta} \cdot \sec^2\theta\).

Substitute: \(LHS = |\sin\theta| \cdot \sec^2\theta\).

Step 4: Replace \(\sec\theta\) with \(1/\cos\theta\):

\(\sec^2\theta = \dfrac{1}{\cos^2\theta}\).

So, \(LHS = \dfrac{|\sin\theta|}{\cos^2\theta}\).

Step 5: Write the Right Hand Side (RHS):

\(RHS = \tan\theta = \dfrac{\sin\theta}{\cos\theta}\).

Step 6: Compare LHS and RHS:

  • LHS = \(\dfrac{|\sin\theta|}{\cos^2\theta}\)
  • RHS = \(\dfrac{\sin\theta}{\cos\theta}\)

They are not the same in general.

Step 7: Check with an example:

Take \(\theta = 45^\circ\).

\(\sin 45^\circ = \dfrac{\sqrt{2}}{2}\), \(\cos 45^\circ = \dfrac{\sqrt{2}}{2}\).

LHS = \(\dfrac{\sqrt{2}/2}{(\sqrt{2}/2)^2} = \dfrac{\sqrt{2}/2}{1/2} = \sqrt{2}\).

RHS = \(\dfrac{\sqrt{2}/2}{\sqrt{2}/2} = 1\).

Conclusion: LHS \(\neq\) RHS. Hence, the statement is False.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.2 | Detailed Answers