NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 7: Coordinate Geometry - Exercise 7.1
Question 12

Question.  12

If the point \(P(2,1)\) lies on the line segment joining points \(A(4,2)\) and \(B(8,4)\), then

(A)

\(AP=\dfrac{1}{3}\,AB\)

(B)

\(AP=PB\)

(C)

\(PB=\dfrac{1}{3}\,AB\)

(D)

\(AP=\dfrac{1}{2}\,AB\)

Handwritten Notes

If the point \(P(2,1)\) lies on the line segment joining points \(A(4,2)\) and \(B(8,4)\), then 1
If the point \(P(2,1)\) lies on the line segment joining points \(A(4,2)\) and \(B(8,4)\), then 2

Video Explanation:

Detailed Answer with Explanation:

Step 1: Recall the distance formula.

The distance between two points \((x_1,y_1)\) and \((x_2,y_2)\) is given by:

\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Step 2: Find the length of \(AB\).

Coordinates of \(A(4,2)\), \(B(8,4)\).

\[ AB = \sqrt{(8 - 4)^2 + (4 - 2)^2} \]

\[ AB = \sqrt{4^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \; \text{units} \]

Step 3: Find the length of \(AP\).

Coordinates of \(A(4,2)\), \(P(2,1)\).

\[ AP = \sqrt{(2 - 4)^2 + (1 - 2)^2} \]

\[ AP = \sqrt{(-2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} \; \text{units} \]

Step 4: Compare \(AP\) with \(AB\).

\[ AB = 2\sqrt{5}, \quad AP = \sqrt{5} \]

This shows that:

\[ AP = \dfrac{1}{2} AB \]

Final Answer: Option D (\(AP = \tfrac{1}{2} AB\)).

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 7: Coordinate Geometry – Exercise 7.1 | Detailed Answers