If \(D\big(-\dfrac{1}{2},\dfrac{5}{2}\big),\ E(7,3),\ F\big(\dfrac{7}{2},\dfrac{7}{2}\big)\) are the midpoints of the sides of \(\triangle ABC\), find \(\text{area}(\triangle ABC)\).
\(11\) square units.
Step 1: Since \(D, E, F\) are the midpoints of the sides of \(\triangle ABC\), the triangle \(\triangle DEF\) is the medial triangle.
A known result: \(\text{Area}(\triangle DEF) = \dfrac{1}{4}\,\text{Area}(\triangle ABC)\).
So, \(\text{Area}(\triangle ABC) = 4\,\text{Area}(\triangle DEF)\).
Step 2: Find \(\text{Area}(\triangle DEF)\) using the coordinate area formula:
\(\text{Area} = \dfrac{1}{2}\left|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)\right|\).
Step 3: Take
Step 4: Compute the differences:
Step 5: Substitute in the formula:
\(\text{Area}(DEF) = \dfrac{1}{2}\left|\left(-\tfrac{1}{2}\right)\left(-\tfrac{1}{2}\right) + 7(1) + \left(\tfrac{7}{2}\right)\left(-\tfrac{1}{2}\right)\right|\)
Now simplify:
So inside absolute value:
\(\tfrac{1}{4} + 7 - \tfrac{7}{4} = 7 - \tfrac{6}{4} = 7 - \tfrac{3}{2} = \tfrac{11}{2}\)
Therefore,
\(\text{Area}(DEF) = \dfrac{1}{2}\times\left|\tfrac{11}{2}\right| = \dfrac{11}{4}\)
Step 6: Use the medial triangle area relation:
\(\text{Area}(ABC) = 4\times\dfrac{11}{4} = 11\)
Final Answer: \(\text{Area}(\triangle ABC)=11\) square units.