NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 7: Coordinate Geometry - Exercise 7.3
Question 17

Question. 17

The points \(A(2,9),\ B(a,5),\ C(5,5)\) are vertices of a triangle right–angled at \(B\). Find \(a\) and the area of \(\triangle ABC\).

Answer:

\(a=2\), area \(=6\).

Detailed Answer with Explanation:

Step 1: Since the triangle is right-angled at \(B\), by Pythagoras theorem:

\(AB^2 + BC^2 = AC^2\).

Step 2: Find \(AB^2\), \(BC^2\), and \(AC^2\) using squared distance (no square roots needed).

Step 3: Compute \(AB^2\).

\(A(2,9),\ B(a,5)\)

\(AB^2 = (2-a)^2 + (9-5)^2 = (2-a)^2 + 16\)

Step 4: Compute \(BC^2\).

\(B(a,5),\ C(5,5)\)

\(BC^2 = (5-a)^2 + (5-5)^2 = (5-a)^2\)

Step 5: Compute \(AC^2\).

\(A(2,9),\ C(5,5)\)

\(AC^2 = (5-2)^2 + (5-9)^2 = 3^2 + (-4)^2 = 9 + 16 = 25\)

Step 6: Apply Pythagoras theorem:

\((2-a)^2 + 16 + (5-a)^2 = 25\)

\((2-a)^2 + (5-a)^2 = 9\)

Step 7: Expand and simplify.

\((2-a)^2 = a^2 - 4a + 4\)

\((5-a)^2 = a^2 - 10a + 25\)

So,

\((a^2 - 4a + 4) + (a^2 - 10a + 25) = 9\)

\(2a^2 - 14a + 29 = 9\)

\(2a^2 - 14a + 20 = 0\)

Divide by 2:

\(a^2 - 7a + 10 = 0\)

\((a-2)(a-5)=0\)

So, \(a=2\) or \(a=5\).

Step 8: Reject \(a=5\) because then \(B(5,5)=C(5,5)\) and no triangle is formed.

Hence, \(a=2\).

Step 9: Find the area of \(\triangle ABC\) (right-angled at \(B\)).

Now \(B=(2,5)\).

\(AB = \sqrt{(2-2)^2 + (9-5)^2} = \sqrt{16} = 4\)

\(BC = \sqrt{(5-2)^2 + (5-5)^2} = \sqrt{9} = 3\)

Area \(= \dfrac{1}{2}\times AB \times BC = \dfrac{1}{2}\times 4 \times 3 = 6\).

Final Answer: \(a=2\) and \(\text{Area}(\triangle ABC)=6\) square units.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 7: Coordinate Geometry – Exercise 7.3 | Detailed Answers