NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 7: Coordinate Geometry - Exercise 7.3
Question 6

Question. 6

Find the coordinates of the point \(Q\) on the x–axis which lies on the perpendicular bisector of the segment joining \(A(-5,-2)\) and \(B(4,-2)\). Also, name the type of triangle formed by \(Q, A, B\).

Answer:

\(Q = \left(-\dfrac{1}{2}, 0\right)\)

Triangle \(QAB\) is isosceles (\(QA=QB\)).

Detailed Answer with Explanation:

Step 1: Let \(Q(x,0)\) be a point on the x-axis. Since \(Q\) lies on the perpendicular bisector of \(AB\), it is equidistant from \(A\) and \(B\). Hence,

\(QA = QB\)  or  \(QA^2 = QB^2\).

Step 2: Write \(QA^2\) and \(QB^2\) using the distance formula.

\(A(-5,-2)\), \(B(4,-2)\), \(Q(x,0)\)

\(QA^2 = (x-(-5))^2 + (0-(-2))^2 = (x+5)^2 + (-2)^2\)

\(QB^2 = (x-4)^2 + (0-(-2))^2 = (x-4)^2 + (-2)^2\)

Step 3: Equate \(QA^2\) and \(QB^2\) and simplify.

\((x+5)^2 + (-2)^2 = (x-4)^2 + (-2)^2\)

\((x+5)^2 + 4 = (x-4)^2 + 4\)

Cancel 4 from both sides:

\((x+5)^2 = (x-4)^2\)

Step 4: Expand and solve for \(x\).

\(x^2 + 10x + 25 = x^2 - 8x + 16\)

\(10x + 8x = 16 - 25\)

\(18x = -9\)

\(x = -\dfrac{9}{18} = -\dfrac{1}{2}\)

Hence, \(Q = \left(-\dfrac{1}{2}, 0\right)\).

Step 5: Now find \(QA\) and \(QB\) to name the triangle.

\(QA^2 = \left(-\dfrac{1}{2}+5\right)^2 + (0+2)^2 = \left(\dfrac{9}{2}\right)^2 + 2^2 = \dfrac{81}{4} + 4 = \dfrac{81+16}{4} = \dfrac{97}{4}\)

\(\Rightarrow QA = \sqrt{\dfrac{97}{4}} = \dfrac{\sqrt{97}}{2}\) units.

\(QB^2 = \left(-\dfrac{1}{2}-4\right)^2 + (0+2)^2 = \left(-\dfrac{9}{2}\right)^2 + 2^2 = \dfrac{81}{4} + 4 = \dfrac{97}{4}\)

\(\Rightarrow QB = \dfrac{\sqrt{97}}{2}\) units.

Step 6: Since \(QA = QB\), triangle \(\triangle QAB\) has two equal sides.

\(AB = \sqrt{(4-(-5))^2 + (-2-(-2))^2} = \sqrt{9^2+0} = 9\) units.

Therefore, \(\triangle QAB\) is an isosceles triangle.

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 7: Coordinate Geometry – Exercise 7.3 | Detailed Answers